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A new method  for the calculation o f  b o n d  orders in alternant hydrocarbons  
is presented. The method  requires a summat ion  over the contr ibut ions o f  
various superposi t ion diagrams. Quantitatively, the method  is almost  as 
reliable as PPP, and due to its simplicity it can be used for fast and relatively 
accurate calculat ion o f  b o n d  orders. In  addi t ion some simple rules are derived, 
which in many  cases can be used to predict  the signs o f  b o n d  orders between 
n o n b o n d e d  atoms. 

Key words: Alternant  hydrocarbons  - -  Bond orders - -  Bond orbital resonance 
theory (BORT) 

1. Introduction 

The aim of  this paper  is to present  a simple graphical  me thod  for the calculation 
of  rr-bond orders in al ternant hydrocarbons .  The method  is derived within the 
f ramework  of  the Bond Orbital Resonance  Theory  (BORT) approach  [1]. The 
basic approximat ion  used in the derivation o f  this method  is the assumption,  
justified in the paper,  that  the g round  state of  an alternant hydroca rbon  is relatively 
well appr 'oximated as a l inear combina t ion  o f  positive BORT Kekul6 structures, 
all these structures being conta ined in the g round  state with the same coefficient. 

The method  implies a simple rule which can be in many  cases used in order  to 
predict  the sign of  the b o n d  order  between n o n b o n d e d  atoms. In  all cases 
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considered, the sign thus predicted is correct. Quantitatively, the method is found 
to be almost as reliable as PPP. Since numerically this method involves only a 
simple summation over contributions of various superposition diagrams, it can 
be used as a method of choice for the fast and relatively reliable predictions of 
bond orders in alternant hydrocarbons. 

Recently there has been a revival interest in various aspects of bond orders [2-14]. 
Politzer and Ranganathan [2] in their study of relative strengths of chemical 
bonds considered bond order-bond energy correlation. Peter [3] investigated the 
well known relationship between bond lengths and bond orders as well as the 
correlation with electronegativity for homo- and heteronuclear bonds. In his 
study of the exactly solvable Hubbard model for linear polyenes Hashimoto [4] 
investigated bond length and bond order dependence of the optical transition 
energies. Mizoguchi [5] considered the correlation of bond orders with magnetic 
properties, while Brown and Altermatt [6] derived bond valence parameters from 
a systematic analysis of the inorganic crystal structure data. Bond orders were 
also investigated in the relatively large conjugated systems, such as long polymere 
chains [7], soccerballene C6o and related systems [8, 9], carbon honeycomb lattice 
[10], etc. 

In spite of the undeniable importance due to the strong correlation with many 
physical and chemical properties, there is in the literature no uniquely accepted 
definition of bond orders [11-14]. Essentially there are two approaches; one can 
define bond orders either in terms of the "standard" density matrix [12], or in 
terms of the density matrix in the L6wdin orthonormalized basis [13]. The latter 
approach seems to perform better and to be more stable [14], and that is the way 
how bond orders are defined in this paper. 

We will consider only rr-bond orders of alternant hydrocarbons. This restriction 
is not essential, and the BORT approach can be also applied to the more interesting 
non-alternant case [15]. However, the treatment of nonalternant molecules 
requires a different set of approximations than the treatment of alternant 
molecules, and nonalternant hydrocarbon are hence not included in the present 
paper. 

2. The method 

In the simple varient of the Bond Orbital Resonance Theory (BORT) the 2n- 
particle ground state ~O of the closed shell conjugated system is spin-separated [16] 

g, = d,/,,b, (1) 

where M is the antisymmetfizer, while ~b and ~ are n-particle spin-a and spin-/3 
substates, respectively. The state & (and equally the state q~) is a linear combina- 
tion of "regular" resonance structures (RRS) S~ (see Appendix) 

~b = Z AaS~. (2) 
a 
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There is some formal graphical similarity between regular resonance structures 
and valence bond (VB) resonance structures. However, except for this graphical 
similarity, these structures are quite different. In the case of RRSs a single 
nonoriented bond represents a nonexcited bond orbital (BO) which accomodates 
one particle, while in the case of the VB structure it represents a two-particle 
state which accomodates two spin paired particles. In addition, RRSs may contain 
oriented bonds which represent excited bond orbitals, while VB structures may 
be ionic. 

Ground state 4~ of an alternant hydrocarbon containing at least one Kekul6 
structure can be approximated with [17] 

~b =•  K~ +, (3) 
a 

where K S are positive Kekul6 RRSs. The approximation (3) is supported by the 
following points: 

(i) The contribution of BORT Kekul~ structures to the ground state of a conju- 
gated hydrocarbon is dominant. In addition, this contribution is significantly 
larger than the corresponding contribution of VB Kekul6 structures. For example, 
a single butadiene BORT Kekul6 structure contains approximately 95% of the 
ab initio SCF butadiene ground state [18], while the corresponding VB Kekul~ 
structure contains only - 2 0 %  of this state [ 19]. Similarly, the two BORT Kekul6 
structures associated with the benzene molecule contain ( jo in t ly ) -90% of the 
benzene SCF ground state [18], while the corresponding VB Kekul6 structures 
contain (jointly) only - 5 %  of this state [19]. In conclusion, BORT Kekul6 
structures are well suited to represent ground states of conjugated hydrocarbons, 
and in the first approximation one can neglect BORT non-Kekul6 structures. 

(ii) The set R(n) of all n-particle regular resonance structures can be partitioned 
into subsets R+(n) and R-(n) containing "positive" and "negative" structures, 
respectively [1]. Under rather general assumptions, which include Hamiltonians 
substantially beyond the PPP model, all RRSs contained in the ground state of  
an alternant hydrocarbon are of the same parity [1]. In particular, all BORT 
Kekul6 structures contained in this ground state are of the same parity. By 
definition, this parity can be chosen to be positive. It is interesting that in the 
case of the Kekul6 structures, this partition into positive and negative structures 
coincides with the Dewar and Longuet-Higgins [20] partition into positive and 
negative Kekul6 structures. 

(iii) BORT Kekul6 structures contained in the ground state of an alternant 
hydrocarbon are coherent. In other words, all these structures are contained in 
the ground state ~b with the same sign. Moreover, in the case of hydrocarbon 
compounds containing up to 430  carbon atoms, the corresponding coefficients 
Aa in (2) are approximately constant with a standard deviation - 10% to maximum 
- 1 5 %  [17]. 

The above three points justify ansatz (3). This ansatz differs from the analogous 
VB ansatz in that ~b Contains only positive Kekul6 structures. Of course, there is 
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in addition a substantial difference in the interpretation of BORT and VB Kekul6 
structures, as well as in the spin separation assumption (1) characteristic of BORT. 

Using ansatz (3) the expectation value of a spin-independent operator ~ in the 
state (1) is 

( ~ ) = 2  E (K.16IKb)/Y.+ + (K+,IK~). (4) 
a,b / a , b  

This relation is quite easy to implement. All one needs is a systematic way for 
the calculation of overlaps (K~+[K~) and matrix elements <K2IeIK ). This is 
done elsewhere [ 1 ]. Expression (4) can be further simplified, since the summations 
over overlaps and matrix elements can be conveniently reformulated in terms of 
the summations over various superposition diagrams. One can thus use relation 
(4) as a simple tool for an easy approximate calculation of ground state properties 
of alternant hydrocarbons. It was recently shown that this relation, in conjuncture 
with the simple Hiickel Hamiltonian, reproduces quite reliably PPP resonance 
energies [17]. The correlation coefficient between the two sets of data is corr = 
0.997 [17]. We will now show that this relation is equally reliable in the prediction 
of bond orders. 

3. Some qualitative relations concerning bond orders 

In the case of the bond orders between atoms of the same parity, expression (;4) 
predicts that these bond orders vanish (see Appendix). This is in accord with the 
well known result derived originally within the MO theory and based on the 
pairing theorem [21]. 

In the case of the bond orders between atoms of the opposite parity one has 

P ~ j = 2 ~ ( g a l P o [ g b ) /  (K~ lgb ) ,  (5) 
+ + + 

a,b / a , b  

where Pq is the bond order between atoms (i) and (j), while pij is the corresponding 
bond order operator. The rules for the evaluation of overlaps (K~+[K~ -) and 

+ + 
matrix elements (KalP,jlKb) are given in the Appendix. These rules are quite 
simple, and in many cases some qualitative predictions are possible. 

Overlaps (K+[K~ -) are nonnegative. Further, matrix element (K Ip,jlK )is non- 
= K , O K b  of structures Ka + and K~- zero if and only if the superposition Gab § § 

contains no 4m-type cycle, and if in addition bond s-- (i,j) is "internal" to Gab. 
Thus in Fig, 1 one has (K+~Ip14IK~)~ 0 since Gab contains bond s-= (1, 4) inter- 
nally, and (K+~IP89IK~)=O since Gab contains bond s-=(8,9) externally. 

§ -l- Moreover, provided nonzero, matrix element (KalpuIKb) is positive if bond s 
forms a (4m+2)- type cycle over Gab, and it is negative if this bond forms a 
4m-type cycle over Gab. Thus (K+aIPI4IK-D < 0 since bond (1, 4) forms a 4-cycle 

§ § 
over Gab, while (Ka[pi2IKb)> 0 since bond (1, 2) forms a 2-cycle over Gab. 

f -  

The above rules concerning the sign of matrix elements can be in many cases 
used in order to estimate the sign of the bond order Pu- It is convenient to define 
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Ka Kb Kc 

UD 
Gab Gac Gbc 

Fig. l. Naphthalene Kekul~ structures and some superposition diagrams. "Diagonal" superposition 
diagrams Ga~, Gbb, and Gcc are not shown. These diagonal superposition diagrams topologically 
coincide with Kekul6 structures K~, Kb, and Kc, respectively 

a "superposition distance" do(Gob) between vertices (i) and (j). If  bond s =- (i,j) 
is internal to the superposition Gab, the superposition distance is defined as the 
shortest distance between (i) and (j)  on Gab. If  this bond is external to Gab, 
superposition distance d~j(Gab) needs not be defined, since in this case the 
superposition Gob does not contribute to Pq. It follows from the above discussion 
that if do(Gab) modulo 4 = 1, then the contribution of Gab tO PO is positive, while 
if d~(Gab) modulo 4 = 3 ,  then this contribution is negative. Thus in Fig. 1 one 
has dl4(Gab ) modulo 4 = 3, and d14(Gbc ) modulo 4 = 3. Both superpositions give 
a negative contribution to P1,4. No other superposition contributes to P1,4 and 
hence P1,4 ( 0. This prediction agrees with HMO, which is a sufficiently accurate 
method to check such a qualitative prediction. 

The above rule is very easy to apply. One needs to examine only these superposi- 
tions which contribute to P~. An example is shown in Fig. 2. One finds P~,4 < O, 
P~,5 > 0, P1,16 < 0 , . . . ,  Pzj5 < 0, P2,6 > 0 , . . .  etc., in complete agreement with 
HMO. 

In some cases this simple method does not work. This happens whenever there 
are superpositions which contribute positively to Po as well as superpositions 
which contribute negatively to P~j. Thus in the case of pyrene (Fig. 3), the 
superposition I contributes positively to P1,14, while the superposition II con- 
tributes negatively to P1,14- Similarly, superpositions III and IV contribute, 
respectively, positively and negatively to Pl,a4. In BORT these contributions 

Fig. 2. 1,2-Benz-anthracene. The signs of all bond orders in this 
compound can be easily derived using the rules described in the text 

2 

11 12 1 1 4 ~  

9 ~ 5  
8 7 6 
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III IV 

Fig. 3. Superposition diagrams which 
contribute to the bond order P1,14 in 
pyrene. Contributions of diagrams I 
and III are positive, while 
contributions of  diagrams II and  IV 
are negative. In BORT these 
contributions cancel 

cancel, and relation (5) predicts Pl,14=0. In HMO one has Pl,14 =-0.02868 
[22]. This is quite small, in qualitative agreement with BORT. Except for bond 
orders P3,14=P6,12=Ps,12 which are related to the bond order P1,14 by 
symmetry, no other bond order in pyrene has both, positive and negative 
contributions. All these other bond orders are predicted with the correct sign. 

An interesting case can happen if the hydrocarbon contains 4m-type rings. In 
this case beside positive the hydrocarbon can also have negative Kukul6 structures. 
Thus biphenylene has five Kekul6 structures, four positive and one negative. In 
the simplest resonance theory (RT) all these structures contribute to the ground 
state [23]. Due to the presence of the negative structure V (Fig. 4) the central 
ring in biphenylene is wrongly predicted to be aromatic. Bond order Pa is also 
predicted to be large, and bond (a) to be short. One way to treat nonbenzenoid 
hydrocarbons within the (covalent) VB approach is to take into account the 
contribution of cyclic permutations [24, 25]. However, in order to obtain satisfac- 
tory results one has to include permutations of higher order [24]. The simple RT 
can hence not be applied. This and similar results prompted strong criticism of 
RT. Thus in discussing biphenylene example Dewar states that RT has "no firm 
foundation in the wave properties of matter" [26]. 

The reason for this and similar failures of RT is easily explained in BORT. Since 
structure V has negative parity, it is not contained in the ground state. The central 
ring in biphenylene is hence not aromatic, and bond order Pa is predicted to be 

V 

Fig. 4. Negative Kekul6 structure of  biphenylene. In RT the presence 
of  this structure leads to the wrong conclusion that the central ring in 
biphenylene is aromatic. In BORT this structure does not contribute to 
the ground state and the central biphenylene ring is not predicted to be 
aromatic 
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zero. The failure of RT is thus due to the inclusion of negative structures in the 
ground state. If one interprets Kekul6 structures in the BORT rather than in the 
simple RT sense, these structures should be omitted. Resonance theory at least 
partly regains "firm foundation in the wave properties of matter", and its predic- 
tions improve. 

The above remark concerning RT can be supported in yet another way. One can 
simplify relation (5) by assuming the zero overlap approximation between Kekul6 
structures 

(K~+[ K ~ ) =  8oh. (6) 

Approximation (6) was rather successfully used in the VB approach [27], it can 
be imposed a priori on the resonance structures without specifying their nature 
[28], and it is implicitly assumed in the simple resonance theory. 

Using (A2) relation (5) reduces to [16] 
+ 

P~j -~ Y, f ] a /  N +. (7) 
a 

In the above relation the summation ~+ is performed only over positive Kekul6 
structures, and N + is the number of such structures. This relation gives vanishing 
bond order P~j, unless atoms (i) and (j)  are directly bonded. Provided there are 
no negative structures, bond orders (7) are the same as the well known Pauling 
bond orders. This shows that in the absence of negative Kekul6 structures Pauling 
bond orders are an approximation to the bond orders (5). However, when negative 
Kekul~ structures are present, Pauling bond orders differ from (7), and they do 
not approximate (5). It is known that in this latter case Pauling bond orders are 
quite inaccurate [26]. The reason for this failure is again the improper inclusion 
of negative Kekul~ structures. 

4. Comparison with HMO and PPP 

Let us now see in more detail how well relation (5) predicts bond orders. In Fig. 
5 are shown some benzenoid hydrocarbons and in Table 1 are the corresponding 
bond orders. HMO, PPP and BORT results are given. Since the PPP results are 
much more reliable than HMO, the comparation of BORT bond orders with PPP 
bond orders is crucial. 

One first notices that BORT bond orders are systematically smaller than PPP 
bond orders. This is not such a serious defect. What matters and what is physically 
most relevant is the relative, ordering of  bond orders, and this is predicted quite 
reliably with BORT. Thus in the case of naphthalene (I) BORT predicts b > d > 
a, c (BORT bond orders P~ and Pc are the same) in agreement with the PPP 
result b > d > e > a. Similarly, in the case of phenanthrene (II) BORT predicts 
i > b, d > g > a, c, e > f  h, again in agreement with the PPP result i > b, d > g > c > 
e >  a > h > f  In general, if PPP predicts bond x to have larger bond order than 
bond y, then BORT predicts bond x to have either larger or the same bond order 
as bond y. This is true for all compounds in Fig. 5. With only few exceptions it 
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fe b " c ~ c h a 

I I I  I l l  

IV 

) 
V 

Fig. 5. Some typical benzenoid compounds. The corresponding bond orders are given in Table 1 

is also true more generally, if one compares bond orders associated with different 
compounds in this figure. Of  course, the agreement obtained in the case of  the 
above compounds  is no guarantee that the descending sequence of  bond orders 
as predicted by BORT will always agree with the descending sequence of bond 
orders as predicted by PPP. Nevertheless, the compounds in Fig. 5 are some 
typical benzenoid compounds,  and the obtained results indicate a strong correla- 
tion between BORT and PPP bond orders. 

HMO bond orders do not correlate so well with PPP bond orders. Thus in the 
case of  the naphthalene H M O  predicts b > c > a > d in disagreement with the 
PPP result b > d > c > a. Similar disagreement can be found in the case of  all 
other compounds  in Fig. 5. These results show that BORT bond orders correlate 
quite well with PPP bond orders, and they correlate less well with the HMO 
bond orders. This is encouraging, since the PPP bond orders are more reliable 
than the H M O  bond orders. 

Another way to estimate relative merits of  H M O  and BORT bond orders is to 
compare the corresponding correlation coefficients in the correlation with PPP. 
These correlation coefficients are also given in Table 1. Thus in the case of  
naphthalene the correlation of BORT bond orders with PPP bond orders (corr = 
0.996) is much better than the correlation of  H M O  bond orders with PPP bond 
orders (corr = 0.763). In general, the correlation of BORT results with PPP results 
is very good, the correlation coefficient in the worst case (compound V) being 
corr = 0.992. 

In view of  such a good correlation, one can successfully emulate PPP bond orders 
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with BORT bond orders. The least square fit yields 

Pppp = 0.731Pbo~t + 0.224. 

This relation reproduces PPP bond orders in Table 

T. P. Zivkovi6 

(8) 
1 with the correlation 

coefficient co r r=  0.995 and with a standard deviation A = 0.014. The analogous 
emulation of  PPP bond orders with HMO bond orders yields 

Pppp = 1.435Phmo -- 0.262. (9) 

This relation reproduces PPP bond orders with the correlation coefficient corr = 
0.916 and with a standard deviation A -- 0.057. BORT bond orders are obviously 
much more reliable than H M O  bond orders. 

One should not attach too much importance to the actual numerical values of  
the above correlation coefficients. Depending on the parametrisation, bond orders 
as calculated by different PPP implementations may differ from each other. We 
have here compared BORT bond orders with PPP bond orders as calculated by 
Dewar  and Gleicher [29]. The comparison with some other PPP bond orders 
should give slightly different results. In addition, numerical data in [29] are given 
only up to three significant figures, and this introduces a substantial error in the 
last digit of  the correlation coefficients. This error is not likely to improve the 
correlation but rather to make it appear  worse. Moreover, the correlation between 
two different PPP calculations can in some cases be of  the same order of  magnitude 
as the correlation between BORT and PPP. One can hence say that BORT bond 
orders correlate with PPP bond orders approximately as well as bond orders 
calculated by one PPP method correlate with bond orders calculated by some 
other PPP method. In conclusion, bond orders calculated using relation (8) and 
BORT values (5) for Pbo~t are almost as reliable as PPP bond orders. Since BORT 
bond orders (5) can be very easily calculated, the BORT approach can be used 
as a method of  choice. 

Appendix 

AI.  BORT resonance structures 

In the bond orbital resonance theory each resonance structure S a is a normalised determinant 
containing mutually disconnected excited and/or  nonexcited bond orbitals (BO) [1]. Graphically, 
excited and nonexcited BOs are represented as oriented and nonoriented bonds, respectively. An 
n-particle resonance structure contains n such bonds and it involves 2n vertices. 

The above resonance structures are linearly dependent, and it is sufficient to consider only "regular" 
resonance structures (RRS). In order to define these structures one has first to partition the set of 
all 2n vertices into two subsets containing n "source" and n "sink" vertices, respectively. By definition, 
each RRS contains only such BO's which connect a source vertex with a sink vertex, i.e. bond orbitals 
connecting either two source or two sink vertices are not allowed [1]. Figure 6 shows RRSs for n = 2. 
In the case of alternant hydrocarbons it is convenient, if possible, to choose such a partition on sink 
and source vertices which coincides with the usual partition into starred and nonstarred atoms. 

A2. Superpositions of resonance structures and active and passive cycles 

For the evaluation of overlaps and matrix elements between RRSs the notion of the superposition 
of RRSs and the distinction between "active" and "passive" cycles is important. 
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$1 $2 

I I  __ 
sa s4 

Fig. 6. a Regular resonance structures for S5 $6 
n = 2. Structures S 1 through S 4 a r e  positive, 
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A superposition Gob =SoOSb  between RRSs So and S b consists of disconnected even cycles. 
Each of these cycles contains oriented and/or  nonoriented bonds. A cycle % ~ Gab is "active" if 
(n~.+m,)  is odd, where 2n,  is the number of bonds in %, while m,  is the number of oriented 
bonds in %. Otherwise the cycle % is "passive" (see Fig. 6b). In particular, if S~ ~ Ko and 
S b ~ K b are Kekul6 resonance structures, Gab contains no oriented bonds. In this case each active 
cycle c,  c Gab is a (4m+2)- type  cycle, while each passive cycle c~ e Gab is a 4m-type cycle. 

A3. Positive and negative resonance structures 

The set R(n)  of  all n-particle RRSs splits into subsets R+(n) and R (n) containing "positive" (S +) 
and "negative" (Sa)RRSs , respectively, Structures S~ and S b are of the same parity if the superposition 
Gab contains an even number of passive cycles. Otherwise they are of the opposite parity [1]. In the 
case of alternant hydrocarbons matrix element of the PPP-type Hamiltonian between structures of 
the opposite parity vanishes [1]. Nondegenerate ground states of alternant hydrocarbons hence 
contain resonance structures of only one parity, which can be conveniently defined to be positive [ 1 ]. 

A4. Overlaps and matrix elements of  bond order operators 

Overlap Sab =--(Sa I Sb) between n-particle RRSs S o and S b is [1] 

10 if all cycles % ~ Gab are active 
Sab = 2 p-~ (A1) 

otherwise, 

where p is the number of cycles in G~b. 

In particular, if S~ -= K a and S b -~ K b are Kekul6 resonance structures, overlap Sab vanishes whenever 
the superposition Gob contains at least one 4m-type cycle. 

Let p~j be a bond order operator involving vertices (i) and (j).  If these vertices are of the same parity, 
then the matrix element (SatpijlSb) vanishes for all structures So and Sb of the same parity [1]. Since 
ground states of alternant hydrocarbons contain only positive structures [1], bond orders in alternant 
hydrocarbons vanish between atoms of the same parity. 

If vertices (i) and (j) are of the opposite parity, then matrix element (Salp~jlSb) equals [1] 

(S~lp,jlSb> = �89 Sab, (A2) 
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where: 

(i) f~b = 1 if vertices (i) and (j)  which define bond s =- ( i , j )  are contained in the same cycle c~ E G~b. 
Otherwise, i.e. if vertex (i) is contained in one cycle c,~ c G~b and vertex (j) in another cycle c~ E Gab, 
then f~b = O. 

(ii) (defined if f,~b # 0). Vertices (i) and (j) identify two segments on c~. These segments, together 
with the bond s ~ (i, j ) ,  from overlapping cycles c~ and c~. By definition, 2n'~ is the number of  bonds 

! ' while m~ is the number of  oriented bonds in c , .  ill C~,, 

(iii) S~b is overlap given by (A1). 

According to (i) through (iii) matrix element (A2) is different from zero if and only if the superposition 
Gob contains no passive cycle, and if in addition bond s =-(i,j) is "internal" to Gab (i.e. if vertices 
(i) and (j) are contained in one and the same cycle cj, ~ Gob). If  nonzero, this matrix element is 
positive if bond s forms an active cycle over Gab , and it is negative if this bond forms a passive cycle 
o v e r  Gab. 

A5. Graphical rules for the evaluation of  bond orders in alternant hydrocarbons 

It is convenient to reformulate summations in (5) in terms of  the summations over superposition 
diagrams. One has to evaluate two sums: 

+ + 
S =  E ( K s l K b )  

a , b  

DiJ =2  • (K+IpijlK~)" (A3) 
a , b  

Dij are "nonnormalised" bond orders, and S is the normalisation constant. 

Using relations (A1) and (A2) and the fact that K~  and K~  are positive Keknl~ structures, one 
derives following rules for the evaluation of  these sums: 

Evaluation of  S: 

(i) Consider only these superposition diagrams Gsu p which contain no 4m-cycle. In addition, Gsup 
should be reproducible as a superposition of positive Kekul6 structures. 

(ii) Each superposition diagram Gsu p with the above properties contributes 2 2p-p2-n to S. Here p is 
the number of  all cycles in Osup, while P2 is the number of 2-cycles in Gsu p. 

(iii) S is the total sum of the above contributions. 

Evaluation of  Di): 

(i) Consider only these superposition diagrams Osu p which contain no 4m-cycle, which are reproduc- 
ible as superpositions of positive Kekul6 structures, and which in addition contain bond s ~ (i , j)  
internally. 

(ii) Each Gsu p with the above properties contributes in the absolute value 2 2~ n to Dij. 

(iii) The contribution of Gsu p to Di) is positive if bond s ~ (i, j )  forms a (4m + 2)-cycle over G~up, 
and it is negative if this bond forms a 4m-cycle over Q~p. 

(iv) D~) is the total sum of  the above contributions. 

The quantity 2 2p-p2 " appearing in the above rules can be also expressed as 2 2~ where p '  is the 
number of  all cycles in O~p excluding 2-cycles, while 2n' is the number of  all bonds in Gsu p excluding 
bonds contained in 2-cycles. Note also that the condition that G~u p should be reproducible as a 
superposition of positive Kekul6 structures can be usually omitted, except in some cases when the 
hydrocarbon has at least two 4m-type rings. Namely, only in such cases it can happen that the 
superposition diagram originates from two negative Kekul6 structures. 

The above rules are easy to implement. Thus Gab in Fig. 1 contributes 1/2 to D1, 2 (p = 3, P2 = 2 and 
n = 5), - 1 / 2  to D1.4, 0 to D1, 5 etc. Similarly, Ob~ contributes 1/8 to D1, 2 (p = 1, P2 = 0, n = 5), - 1 / 8  
to D1.4, 1/8 to Dr.5, etc. 

The above rules, supplemented with some iterative relations which further simplify the calculation 
of  S and D~j were used in the calculation of BORT bond orders in Table 1. 
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